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Abstract—Today’s cloud computing platforms have seen much
success in running compute-bound applications with time-varying
or one-time needs. In this position paper, we will argue that the
cloud paradigm is also well suited for handling data-intensive
applications, characterized by the processing and storage of data
produced by high-bandwidth sensors or streaming applications.
The data rates and the processing demands vary over time for
many such applications, making the on-demand cloud paradigm
a good match for their needs. However, today’s cloud platforms
need to evolve to meet the storage, communication, and pro-
cessing demands of data-intensive applications. We present an
ongoing GENI project to connect high-bandwidth radar sensor
networks with computational and storage resources in the cloud
and use this example to highlight the opportunities and challenges
in designing end-to-end data-intensive cloud systems.

I. INTRODUCTION

After initial proposals over 40 years ago [19], cloud comput-
ing platforms have finally popularized the on-demand model
of computation originally inspired by public utilities, where
consumers provision and pay for computing resources only
when they use them. The pay-for-use model is generally more
cost-effective and efficient for both consumers and providers.
While consumers tend to under-utilize their on-site IT facili-
ties, providers are able to sustain high aggregate utilization by
taking advantage of statistical multiplexing to simultaneously
satisfy many consumers. Cloud platforms, such as Amazon’s
family of web services, using an Infrastructure-as-a-Service
(IaaS) model provide abstractions that are general enough
to support a wide range of existing distributed computing
platforms tailored to specific application scenarios. Amazon
allows consumers to rent virtual machines (EC2), storage
volumes (EBS), and storage space (S3) on-demand and pay
only for resources they use. While pricing models vary for
each resource, consumers typically pay a fixed rate for both
their length of use and their aggregate network and disk I/O
bandwidth.

Many consider IaaS platforms a natural evolution of on-
going work on high-performance scientific and grid comput-
ing, which focuses predominantly on supporting large-scale
execution of computationally-intensive scientific tasks [11].
Due to the generality of IaaS platforms, applications with
other models of computation have also become increasingly
popular. In particular, Google’s family of services, including

GFS [9], MapReduce [6], BigTable [4], and others [7], tailor
abstractions for sub-tasks that are useful for efficiently storing
and searching unstructured, and largely static, customer and
web data. These projects have become increasingly popular
beyond Google with the emergence of the open-source Apache
Hadoop project. For instance, MapReduce exposes a program-
ming paradigm that allows users to efficiently manipulate—by
filtering, sorting, and aggregating—multi-terabyte, and even
petabyte, datasets.

Unlike general scientific computations, which may encom-
pass highly-synchronized distributed compute-bound tasks,
MapReduce instead focuses narrowly on supporting batched
processing of a special class of embarrassingly-parallel, data-
intensive tasks. In addition to MapReduce, numerous other
“big data” cloud platforms supporting a variety of data lay-
out and consistency models, e.g., Dynamo [7], Cassandra,
PNUTS [5], are also emerging. Thus, with the advent of a
wide-range of these cloud-inspired data-intensive paradigms,
cloud usage has grown increasingly data-intensive. How-
ever, interestingly, cloud platforms and their programming
paradigms largely remain separate from, and agnostic to, both
the data sources they operate on and the networks that transmit
that data. As a result, there is an opportunity to improve
coordinated provisioning of the cloud computing and storage
resources that process and archive data with the data sensing
and network resources that produce and transmit data.

In parallel with these developments in the cloud for sup-
porting data-intensive applications, environmental sensors that
collect data to understand and address both immediate and
long-term environmental problems have become increasingly
important pieces of societal infrastructure. These sensors are
evolving from being largely disconnected and producing low-
bandwidth data streams to being directly integrated into the
network fabric and producing streaming high-bandwidth data
streams. For example, weather radars, such as those used
in the NEXRAD system in the United States, are capable
of producing data rates near 200 megabits/second. Recently,
scientists [23] have prototyped denser networks of smaller,
steerable radars that produce similar data rates but provide
more accurate higher resolution images of smaller regions
than NEXRAD. Networks of pan-tilt-zoom video cameras
being deployed across both the southern and northern border



by the U.S. border patrol, as well as large astronomical
radio telescopes, also represent real-world examples of high-
bandwidth sensors that produce streaming data.

Unlike the largely static data sources in use on existing
cloud platforms, high-bandwidth sensors have both time-
varying resource needs and real-time performance demands.
Since sensors collect data in the real world, their needs
are driven primarily by unpredictable real world events. For
instance, weather radars may produce more data and require
higher-bandwidth during intense thunderstorms than during
periods of calm. Likewise, pan-tilt-zoom cameras may require
low latency network connections during times of intense
border activity, but may not require network resources at
all when performing conventional monitoring functions. In
addition to time-varying needs, closed-loop adaptive sensor
networks exhibit both latency and bandwidth requirements to
transmit data to back-end processors, process the data, and use
the result to influence sensor steering decisions. To experiment
with these high-bandwidth sensor networks, we have deployed
a small testbed of high-bandwidth sensors [17], [10], including
both radars and cameras, in Western Massachusetts as a plat-
form for experimentation as part the NSF GENI initiative [15].

In this position paper, we argue that the time-varying,
data-intensive requirements of these high-bandwidth sensor
network platforms can benefit from tight integration with both
the compute and storage resources offered by cloud comput-
ing platforms, and the emerging “big data” cloud software
platforms. We also discuss additional cloud requirements, no-
tably layer 2 network integration, to facilitate high-bandwidth
sensor network applications. We first lay out, in Section II, a
motivating application scenario that highlights the benefits of
coordinated provisioning of high-bandwidth sensors and cloud
resources. We then use our application scenario to derive a
set of architectural requirements in Section III for a general
control plane that is able to accommodate end-to-end high-
bandwidth sensing applications that also incorporates both
networking and cloud resources. Finally, before concluding, in
Section IV, we provide a brief overview of our ongoing work,
focusing on our ViSE testbed for high-bandwidth sensors, as
well as the GENI project. We discuss the benefits of integrating
ViSE with GENI, and how GENI’s goals are well-matched to
integrating sensors with cloud substrates.

II. MOTIVATING SENSOR → CLOUD APPLICATION

Our prior experience [10], [13], [17] has shown that a
key characteristic of high-bandwidth sensor systems is the
need for servers to process the data sensors produce in real-
time to drive subsequent actuation. For example, our steerable
weather radars are capable of producing data at a rate of
nearly 200 megabits per second. In a network of these steerable
radars [13], [23], data centers aggregate data feeds from multi-
ple radars, process the data in real-time, and use the results to
steer (“actuate”) each radar in subsequent observations. The
observe-process-actuate feedback loop gives these networks
the potential to closely track fast moving weather phenomena,
such as tornadoes. Weather radars are not the only real-world

examples of high-bandwidth sensors capable of actuation: the
U.S. Border Patrol is deploying networks of pan-tilt-zoom
(PTZ) video cameras to continuously monitor the northern
border for smugglers [14], and as part of a “virtual fence” on
the southern border [8]. For instance, in related work [17], we
multiplex PTZ cameras between concurrent adaptive sensing
tasks, including continuous monitoring, object tracking, and
fixed-point sensing.

A. Sensor Feedback Loop

High-bandwidth sensors capable of actuation have a number
of characteristics that distinguish them from more typical
low-power embedded sensors. Rather than being deployed
“off-the-grid” in remote settings and communicating using
wireless radios, the energy and bandwidth demands of these
sensors necessitates connections to both the power grid and
wired network links. The system is inherently distributed
since multiple sensors may need to coordinate their actuations
to achieve specific network-wide tasks, such as sensing the
same region from multiple vantage points. In some cases,
as with long-range radars that track mesoscale weather sys-
tems across entire regions, the coordination may cover large
geographically-disparate areas. Further, high-bandwidth sensor
systems are data-driven since they use sensor data to drive
subsequent actuation and vice-versa. Thus, the resulting con-
trol loop must meet timeliness constraints on sensing, data
processing, and actuation. For instance, if a severe weather
system is approaching an area, there may be tighter timeliness
requirements, requiring more resources, than during a calm
period. Finally, applications with different goals may choose
to steer these sensors in different directions. As a result,
the system must be capable of service multiple concurrent
applications with differing requirements [17], such as wind
estimation to track tornadoes or rainfall estimation to predict
floods.

To accurately sense changing phenomena, the network’s
feedback loop must be quick and responsive or else sensors
may not be able to keep up. The key to a fast turnaround
from initial observation to informed actuation is the avail-
ability of the network resources—to transmit the data—and
the computing resources—to process it. Of course, a high-
bandwidth sensor network’s need for computing and network
resources fluctuates over time based on its real-world obser-
vations. While high-bandwidth network links and significant
computing power may be necessary to track a powerful storm,
these resources may not be necessary during periods of relative
calm. Due to these natural fluctuations, dedicating multiple
high-bandwidth, and in some cases nationwide, network links
along with entire data centers is not desirable, since these
expensive and useful resources would otherwise sit idle for
significant periods of time. Instead, the system’s ability to
reserve—during periods of intense activity—and release—
during periods of inactivity—both computing and network
resources is crucial. This is exactly the type of elastic be-
havior cloud computing platforms target. However, existing
for-profit cloud computing platforms, such as Amazon’s EC2,



are available only using the public Internet, and are incapable
of reserving backbone network resources and linking them to
edge servers and storage.

As we show in Section IV, the ability to reserve high-
bandwidth is important for the real-time data-intensive sensing
applications our GENI/ViSE testbed supports. We have found
that providing a Layer 2 fabric is also important in developing
and managing holistic applications that include resources from
multiple substrates, from sensors to network links to the cloud.
We provide a high-level outline of an example workflow from
a radar testbed to a back-end cloud computing platform, to
highlight the benefits of linking together both sensing and
cloud resources using high-bandwidth Layer 2 connections.

B. Radar Application

In radar sensing, a collection of daemons typically work
together to gather, process, and transmit data to multiple
destinations. An initial time-series daemon operates close to
the radar to take streaming data from its analog-to-digital
interface card and batch it together into one or more radials,
where each radial contains sensor readings from a specific
angle of the radar’s antenna. This daemon also communicates
with the radar over a separate control line to determine the
angle of the data stream, i.e., the position of the radar’s antenna
in space for each radial. Multiple daemons may communicate
with the time series daemon to fetch the data for storage
or manipulation. For example, one daemon may fetch the
batched data and store it in files. For the radars we study in
[13], the radar produces files every 30 seconds, where each
file is roughly 1 gigabyte in size, at a rate of nearly 200
megabits per second. Alternatively, a moment data daemon
may fetch the data to produce various moment data, including
both reflectivity and velocity data. This daemon transforms the
raw time-series data by reducing its resolution and normalizing
its scale to make it comparable with other different types of
radars. The moment data daemon may also write the data to
a file for archival (at roughly 8 megabytes per file), generate
graphics from the data to use on a local radar map, or post
the data to an LDM (Local Data Manager) [12] queue that
operates like a simple publish/subscribe system to distribute
data products.

There may be multiple LDM receivers running on remote
servers listening for new data to post to the queue. A server
may also be listening for multiple queues to post data from
multiple radars. Once the queues post data, software triggers
various detection algorithms to execute on the data. The output
of these detection algorithms may then inform subsequent
actuation along a reverse path. If we consider applying this
application in a severe weather scenario without the capability
for reserving both network and cloud resources there are
multiple potential bottlenecks. For instance, while there may
be ample compute resources available for processing, the LDM
queues must wait until enough data posts from multiple radars
before triggering detection algorithms. Thus, without sufficient
bandwidth the detection algorithms may stall. Since these
algorithms not only provide immediate forecasting, but also

inform the direction of future actuations, any bottlenecks are
magnified because they actually delay subsequent sensing.
In effect, the system behaves less like multiple independent
workflows, and more like a closed loop pipeline, where any
stall in the pipeline causes the entire loop to stall. Of course, if
ample bandwidth is available, but ample data center resources
are not, there may also be a stall in the data pipeline.

Since our system is setup as a collection of daemons that
communicate over standard pipes and sockets, their placement
in a network is flexible. For example, it is not feasible to
stream raw time-series data over the public Internet. As a
result, the moment data daemon typically operates locally
to reduce the data’s resolution, allowing the detection al-
gorithms to run only over coarse moment data. However,
higher bandwidth links will change the current trade-offs that
dictate today’s daemon placement. Another advantage of the
workflow is that the input to each daemon may be either
live data or archived files. Storing archived time-series and
moment data in the cloud lowers the barrier to processing that
data: for instance, scientists may generate the moment data
above from raw time series data using a simple MapReduce
job [6]. Further, the ability to package up such a sensing-
to-processing workflow into one or more virtual appliances
to enable turn-key deployment on different cloud computing
substrates, such as Amazon’s EC2 [1] or the open-source
Eucalyptus project [2].

III. REQUIREMENTS

Below we list a few requirements for next-generation cloud
platforms to enable support for high-bandwidth sensors.

Dedicated Virtual Networks. Since current cloud platforms
are only accessible over the public Internet, they do not
offer latency or bandwidth guarantees to applications. Next-
generation cloud platforms, including GENI, should allow
consumers to reserve dedicated virtual network links from
source to destination. Reserving both network and computing
resources for elastic sensing applications requires policies at
both the data center and network level to decide how to adapt
co-located applications.

We are leveraging our current work on empirical measure-
ments of virtual machine and cloud resource isolation [3], [20],
as well as our recently developed algorithms to optimize the
cost associated with reconfiguring an application’s capacity in
the cloud [18] based on these measurements, to make informed
decisions. Additionally, we are leveraging our prior work on
VM migration [22], [21] to inform these policies as well.
We are currently expanding ViSE to include resources from
EC2, connected via Layer 2 using OpenVPN, and connected
to NLR’s dynamic VLAN service (Sherpa) to provision high-
bandwidth network links between ViSE and other GENI par-
ticipants. In particular, ViSE connects to Eucalyptus clusters
at Duke University and the Renaissance Computing Institute
through provisioned and reserved NLR paths as part of GENI,
which will soon be available as a research and deployment
platform.
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Fig. 1. A simple illustration of a radar workflow and closed-loop adaptive control that spans radar sensor, local processing nodes, the network, cloud storage,
and cloud computing platforms. Data flows through multiple daemons and network links before reaching cloud processing platforms, which process the data
to inform subsequent sensing tasks. Any of these steps, including the network as well as available cloud processors can serve as a bottleneck.

By including provisioned network links as part of a single
platform for sensing applications, our vision is complementary
to recent efforts, e.g., CASA [23] and LEAD [16], to make
both sensors and IT resources more flexible in response to
real-time weather phenomena. Our example radar workflows
are inspired by our current joint work with CASA at
the UMass-Amherst. While LEAD recognized the need
for flexible and adaptive control of both sensing and IT
resources, our goal is to link steerable sensors to cloud
resources via provisioned network paths that quicken the
observe-process-actuate feedback loop present in adaptive
steerable sensor networks.

High-performance Storage Systems. In addition to
on-demand access, commercial cloud storage platforms
present characteristics that make them attractive for hosting
high-bandwidth sensor network applications. For instance,
clouds effectively offer infinite storage at a linear price that
is decoupled from processing. Typically, storage costs follow
a step function where each additional step may incur steep
costs, especially for large disk arrays. Further, since storage
platforms like EBS and S3 are typically replicated, consumers
get data redundancy in addition to storage space. However,
despite these characteristics, clouds will need to evolve to
effectively support high-bandwidth sensor networks. Below
we list a few requirements for next-generation clouds. Current
cloud platforms leverage both virtual machine technology to
isolate and multiplex resources and commodity disks. The
performance of these technologies may not be suitable for
high-bandwidth applications. Integrating high-performance
storage systems will prove beneficial in these cases.

Large-scale Processing Platforms for Time-series Data.
While there are many “big data” platforms available today,
they do not focus specifically on the type of time-series
data and processing required by sensors. Platforms, such as
MapReduce, may be applicable to some types of time-series
data processing. For instance, the simple data manipulations
performed by the moment data daemon are easily transformed

into MapReduce-style computations. However, computations
of forecasts from time-series data typically involve numerical
solutions to partial differential equations that do not conform
to MapReduce’s embarrassingly parallel style of computation.
Other big data platforms largely focus on providing structure
to efficiently query and retrieve unstructured data. For these
style of computations, new platforms may be required to fully
utilize the scale of cloud resources that are available.

IV. ONGOING WORK

GENI consists of a federated collection of research testbeds
donated by universities, industry research labs, and nation-
wide networks. GENI’s goal is to provide a shared research
platform to support a wide range of realistic and repeatable
network science and engineering experiments at scale. In many
ways, GENI resembles a cloud computing platform: at its core,
it must multiplex collections of heterogeneous physical and
virtual hardware components among multiple concurrent ex-
periments. Thus, basic commercial cloud computing platforms
represent a partial realization of a core GENI function. As
with GENI, cloud platforms expose open web services APIs
for third-parties, i.e., GENI researchers, to request isolated
collections of virtualized hardware components, i.e., GENI
slices, to deploy their applications, i.e., GENI experiments.

However, despite the similarities, there are key architectural
differences between GENI and commercial cloud platforms.
For instance, no single entity will operate the GENI prototype,
since it will consist of a federation of autonomous testbeds
hosted and controlled by a variety of institutions. Further,
since GENI will initially operate as a non-profit sponsored
by the NSF, resolving scheduling conflicts on highly utilized
portions of the testbed may not be as easy as allocating re-
sources to the highest bidder. Perhaps the primary architectural
difference, though, results from GENI’s goal to support a wide
rage of hardware components, potentially including, not only
machines, but also storage volumes, network links, mobile
devices, and sensors. Exposing APIs that allow researchers
to reserve entire networks of heterogeneous devices promotes
the development of holistic end-to-end systems, including



the application scenario we discuss in the next section, that
combines real-world tasks, such as sensing, with back-end
processing and storage tasks.

A. ViSE Integration

As part of GENI, we have integrated our ViSE 1 high-
bandwidth sensor testbed with one of GENI’s candidate
control frameworks. ViSE currently consists of an Internet-
accessible gateway node along with three geographically-
distributed sensor nodes. Each node is roughly 10 kilometers
from the others, and they communicate using 802.11b over
long-distance antennas. Each node includes three distinct
sensors, a Davis VantagePro2 Weather Station, a Sony SNC-
RZ50N Pan-Tilt-Zoom Camera, and a Raymarine RD424
Radome Radar Scanner. We primarily use ViSE as a platform
for experimenting with closed-loop control of adaptive sensor
networks using steerable sensors. Applications actuate sensors
to capture data at a specific time, location, spatial region,
etc., stream that data over both wireless and wired networks
to compute clusters for analysis, and use the new results to
actuate and refocus sensors on important regions as conditions
change. For example, recent work [13] explores how shared
high-bandwidth sensor systems can intelligently prioritize and
compress data when not enough bandwidth exists to transmit
all of the sensor data.

B. Indirect Benefits of Integration

Beyond enabling new types of cross-hardware applica-
tions and experiments, integrating both high-bandwidth sensor
testbeds and cloud computing platforms has a number of
indirect benefits for GENI’s prototype development. For in-
stance, GENI’s goal of developing a platform that supports the
broadest possible range of network experiments covering the
broadest possible range of substrates necessitates an extensible
design, where core GENI entities, e.g., Component/Aggregate
Manager, Clearinghouse, Slice Controller, define interfaces
for mapping their functions onto a range of different sub-
strates and experiments 2. For example, component/aggregate
managers must support both high-level GENI functions, such
as interactions with Clearinghouses, Slice Controllers, etc.,
and interfaces to interact with specific substrate technologies.
While Clearinghouses need not interface with specific sub-
strate technologies, they need substrate-specific knowledge to
facilitate experiment resource discovery and allocation.

However, extensible platforms too often “can do anything,
but are good for nothing.” As such, their design and implemen-
tation must interleave both general platform development with
specific platform use-cases. For GENI, a use-case requires
stitching different architectural components together—from
control frameworks, to substrates, to experiment workflow
tools—and augmenting them to support a specific class of ex-
periment. Integrating sensors with cloud computing resources
represents an example of this type of “vertical” integration
for a general class of data-intensive experiments. While our

1ViSE is an acronym for Virtualized Sensing Environment
2See [15] for details on GENI nomenclature.

initial focus is on data produced from our own ViSE sensornet
testbed, a data-intensive experiment may organize itself around
a collection of data sources, intermediaries, and data sinks. For
instance, the data sources could be high-bandwidth reflectivity
data from a ViSE radar sensor, continuous web crawls, or
streams of measurement data, the intermediaries could be
processing nodes or network elements, and the data sinks could
be storage volumes or object stores.

Integrating cloud computing platforms also offers the same
benefits to GENI as it does to medium- to small-sized busi-
nesses: a cost-effective means for scaling the size of an
infrastructure while holding human administrative burdens
constant. Further, GENI has yet to incorporate virtualized
storage allocated independently of processing nodes to archive
sensor/measurement data, which is a pre-requisite for effective
integration of high-bandwidth sensors. Thus, GENI can benefit
from the addition of the storage paradigms already offered by
cloud computing platforms, including Amazon’s EBS and S3.
Finally, sensors and storage volumes will likely have time-
varying demands that are not correlated with the demand
for compute servers. Integrating sensors and storage require
GENI to support applications that bind different resources with
different lifetimes together, such as computation and sensors
(short lifetime) and storage (long lifetime).

V. CONCLUSION

This position paper argues for tightly integrating high-
bandwidth environmental sensors, such as weather radars and
video cameras, with cloud resources using reserved network
links. We describe a motivating application scenario derived
from a heterogeneous high-bandwidth sensing testbed we are
building as part of the GENI initiative. Since GENI’s goal
is to build a platform that supports research on a broad
range of heterogeneous devices, it provides an opportunity
to overcome current challenges in providing this type of
coordinated provisioning between sensor networks, network
providers, and cloud computing providers.
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